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ABSTRACT 

Forest Above ground biomass (AGB) and 

carbon stock (AGC) estimation is important 

for carbon budget accounting, sustainable 

forest management as well as for 

understanding the role of forest ecosystem in 

the climate change mitigation. In the recent 

decade, there has been a growing global 

interest on quantifying AGB and AGC in the 

tropical countries. However, the information 

on AGB and AGC at local and subnational 

scales in most of the tropical forests is 

scattered and not consolidated. In this study, 

we reviewed the existing information on 

AGB and AGC for tropical rainforests of 

northern Tanzania. We used both data 

published in the peer-reviewed literature and 

data from unpublished sources provided by 

various sources. 

Our results showed that, there are three types 

of data sources and methods used for 

estimation of AGB and AGC. These 

included, field, geographical information 

system and remote sensing. Of all the 

methods, field based method was applied to 

a large extent. The average reported 

minimum values of AGB and AGC are 

177.00 Mg ha-1 and 88.5 Mg ha-1, and the 

maximum average values are 872 Mg ha-1 

and 436 Mg ha-1 respectively. Overall, the 

average values of AGB and AGC in the 

Usambara tropical mountain forests 

(UTMFs) are 351.08 Mg ha-1 and 175.54 Mg 

ha-1 respectively. Forest structure 

parameters, particularly tree sizes and 

number of tree stems, were the major 

structure parameters reported to affect the 

amount of AGB and AGC. To conclude, the 

study revealed that there is a progressive 

trend in the estimation of AGB and AGC in 

the UTMFs. However, more update and 

effective forest survey data and methods are 

needed particularly in west Usambara 

mountain forests block.  

Key words: Above ground biomass and 

carbon stock, climate change, tropical 

rainforest. 

 

BACKGROUND 

Estimation of forest biomass and carbon 

stock is important for quantifying the roles of 

forests as carbon sources or sinks and for 

supporting sustainable forest management 

(Temesgen et al. 2015). In the recent 

decades, the concern about global climate 

change has even further highlighted the need 

to find efficient and more accurate ways of 

estimating and reporting forest biomass and 

carbon stocks at local, national, continental 

and global scales. 

Tropical forests have drawn much attention 

given its capacity to store substantial amount 

of the world’s carbon stocks, where 

approximately 55% of global terrestrial 

carbon, estimated at 471 ± 93 petagrams is 

stored in the tropical forests (Pan et al. 2011). 

In addition to their total carbon storage, 

tropical forests are also net carbon sinks 

(Lewis et al. 2013). As a consequence of 

their significant carbon storage and sink 

capacity, tropical forests are considered to 

play a critical role in climate change 
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mitigation (Carrasco and Papworth 2014; 

Chazdon et al. 2016). 

Despite their potential, tropical forests are 

threatened by deforestation and forest 

degradation, mainly caused by human 

induced activities such as timber and 

fuelwood extraction, conversion of the forest 

to other land uses such as agriculture 

farmland, oil and gas production, mining, 

and infrastructure development (Achard et 

al. 2002; Hansen et al. 2013). This has 

resulted to loss of biodiversity and increase 

in global carbon emissions as the major 

consequences (Sasaki et al. 2016). It is 

estimated that carbon emissions from 

tropical deforestation and degradation 

contribute about 8 to 15% of annual global 

anthropogenic carbon emissions (Houghton 

2013; Chazdon et al. 2016). In view of this, 

the estimation of biomass and carbon stock is 

considered to be a critical step for 

development and implementation of 

mitigation strategies on reducing the 

negative impacts of greenhouse gases 

emissions in the tropical countries and globe 

at large. 

Furthermore, the growing carbon trade and 

desire to mitigate carbon emissions through 

forest protection, has spawned a number of 

policies, programs, and legislative actions 

which needs estimations of biomass and 

carbon stock as the basis of their 

implementation strategies (Temesgen et al. 

2015). One widely known forest based 

climate change mitigation strategy under the 

United Nations Convention on Climate 

Change (UNFCCC), is reducing emissions 

from deforestation and forest degradation 

(REDD+) (Angelsen 2017). This strategy or 

policy mechanism intends to combat climate 

change while enhancing forest protection by 

providing financial incentives for 

implementation of five REDD+ activities 

(UNFCCC, 2011, Petrokofsky et al. 2012) 

which include: (1) reducing emissions from 

deforestation, (2) reducing emissions from 

forest degradation, (3) conservation of forest 

carbon stocks, (4) sustainable management 

of forests, and (5) enhancement of forest 

carbon stocks. To assess outcome of the 

implementation of the REDD+ activities, 

implementers must create measurement, 

reporting and verification (MRV) schemes 

for carbon stocks and changes (Bos et al. 

2019). Such schemes/systems are important 

for estimation and monitoring of carbon 

emission which is mathematically obtained 

as the product of activity data (AD) (i.e., area 

of forest changed into another type of land 

use) and Emission Factors (EF) (i.e., carbon 

stock change estimations per unit of activity 

(in carbon per hectare)). This has increased 

the number of projects and studies which 

have attempted to report biomass and carbon 

stock for different forests in the tropical 

countries at global and national scales (Le 

Quéré et al. 2014; Tyukavina et al.2015). For 

example, according to Romijn et al. (2015) 

the total tropical forest area that is monitored 

with good forest inventory data had 

increased from 38% in 2005 to 66% in 2015. 

However, there is still lack of harmonized 

and consolidated information on biomass 

and carbon stock at local and subnational 

scales, which may be due to variation in data 

sources, sampling design, estimation 

methods, scales of study areas, topography, 

forest types, elevation, level of 

anthropogenic pressures, and microclimate 

(Sun and Liu 2020). This may create 

challenges in reporting carbon emissions for 

the scale less than a nation. A typical 

example are tropical mountain forests where 

there is far less and scattered information on 

forest biomass and carbon stock, although 

their potential to store and sequester 

substantial amounts of carbon has been 

emphasized (e.g. Spracklen and Righelato 

2014). 

According to IPCC (2006), carbon emissions 

reporting requires estimation of Above-

Ground Biomass (AGB); Below-Ground 

Biomass (BGB); deadwood; litter and soil 

organic matter. Of all the pools, AGB is 

considered to plays a key role in the 

development of REDD+ MRV system as 

well as in the sustainable forest management, 

because it can be recalculated to carbon data, 

and it is a major predictor variable for 
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modelling the other four categories (Solberg 

et al. 2015). Additionally, AGB is identified 

as one of 54 Essential Climate Variables 

(ECVs) by the Global Climate Observing 

System (GCOS) because of its major role in 

the global carbon cycle (Santoro et al. 2020).  

Thus, in this review, we summarized and 

synthesized Above ground biomass (AGB) 

and carbon (AGC) stock studies conducted in 

the Usambara tropical mountain forests 

(UTMFs) of Tanzania. The UTMFs are 

amongst the oldest and most biodiverse 

forests on Earth. They are a global priority 

for conservation and provide ecosystem 

services including carbon storage and 

sequestration. A number of AGB and AGC 

stock estimations have been reported by in 

situ studies conducted at different spatial 

scales in UTMFs. Yet to our understanding 

there is limited number of studies to date 

which have attempted to review and 

harmonize the AGB and AGC values 

reported in this biome. This study addresses 

this knowledge gap by enlightening the 

development status, state of art and research 

trends on AGB and AGC estimation as well 

as the factors affecting AGB and AGC 

distributions in the UTMFs.  

The information on AGB and AGC 

presented in this review provides references 

for more accurate information in line with 

Tier 2 carbon estimation approach. More 

specifically, the paper aimed at 1) describing 

data sources, types for AGB and AGC 

estimation in UTMFs, 2) describing the state 

of art on AGB and AGC estimation methods 

in UTMFs, 3) summarizing and harmonizing 

the AGB and AGC estimates of UTMFs, and 

4) reviewing factors affecting distribution of 

AGB and AGC in UTMFs. 

 

METHODS 

Study area 

This review study focused on Usamabara 

Mountains Forests located in Lushoto, 

Korogwe, Mkinga and Muheza districts in 

Tanga region. The Usambara Mountains 

consists of two highlands blocks, the East 

Usambara Mountain Fiorests (EUMFs) 

which rises up to 1484 m and the West 

Usamabara Mountain Forests (WUMFs) 

which rise nearly to 2294 m (Platts et al. 

2010). The two blocks are part of the widely 

known Eastern Arc Mountains (EAMs) 

which are group of isolated mountains 

stretching from Southeast Kenya to the 

Makambako Gap in Southcentral Tanzania 

(Figure 1). These blocks contain a large 

number of protected forests notably Nature 

and Forest Reserves which are also part of 

the World Database for Protected Areas 

(WDPA), managed by the United Nations 

Environment World Conservation 

Monitoring Centre (UNEP-WCMC). Figure 

2 shows some of these forests in each block. 

Only forests with the GIS layers/polygons 

available in the WDPA and the Eastern Arc 

Conservation Endowment Fund (EAMCEF) 

website are shown in Figure 2. 
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Figure 1. Eastern Arc Mountain Blocks 

Figure 2. Forests in West and East Usambara mountains blocks 
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East Usambara Mountain Forests 

The East Usambara Mountains fall within 

Muheza, Mkinga and Korogwe Districts in 

Tanga Region. They are situated within 40 

km of the coastal town of Tanga, between 4º 

48’ - 5 º 13’S and 38 º 32’- 38 º 48’E 

(Johansson et al. 1998). The rainfall 

distribution is bi-modal, peaking between 

March and May and between October and 

December. Rainfall is greatest at higher 

altitudes and in the south-east of the 

mountains, increasing from 1,200 mm 

annually in the foothills to over 2,300 mm at 

higher altitudes (Hamilton and Bensted-

Smith 1989). The dry seasons are from June 

to August and January to March. In East 

Usambara there are two Nature Reserves 

(Amani and Nilo); eleven Forest Reserves 

(Bamba, Derema, Kambai, Kwamgumi, 

Segoma, Semdoe, Mtai, Mlinga, Manga, 

Mlungui, Longuza Teak plantation); four 

Village Forest Reserves (Kizee, Kizangata, 

Mfundia, Handei); and two private forests 

(Magoroto and Kwamtili). The total area is 

around 31,000 ha. The vegetation of these 

forests ranges from lowland areas at c.300 m 

on the eastern side, through sub montane 

forests to the montane forests. Tree species 

composition varies considerably, but species 

such as Khaya anthotheca, Milicia excelsa are 

found in the lowlands and others such as 

Myrianthus holstii, Albizia gummifera, 

Allanblackia stuhlmannii and Newtonia 

buchananii dominate at higher altitudes (URT 

2010). 

West Usamabara Mountain Forests 

West Usambara Mountains are located in the 

Northern part of the Eastern Arc Mountains 

(4° 25'-5° 07' S and 38° 10'-38° 35' E) 

forming a large upland block covering 2200 

km2. The West Usambara Mountain Forests 

(WUMFs) are found mainly in Lushoto 

District, but a smaller area also occurs in 

Korogwe District. The climate in WUMFs is 

oceanic with bimodal rainfall, partly 

determined by their proximity to the Indian 

Ocean and the equator. Rainfall peaks in 

April and November. The mean annual 

rainfall maximum is 2,000 mm in the wettest 

areas, falling to less than 600 mm in the rain 

shadow areas (Lovett 1996). Temperatures 

are higher on the lower parts (25-27° C mean 

monthly) and lower on the plateau (13-18°C 

mean monthly). The minimum and 

maximum temperatures are 13°C and 27°C, 

respectively. Extreme temperatures (7°C 

during cold seasons and 30°C during hot 

seasons) have been recorded (Msuya and 

Kideghesho 2009). According to URT 

(2010). The WUMFs has one Nature Forest 

Reserve (Magamba); Twenty three Forest 

Reserves (Mkusu, Mzinga, Baga I, Baga II, 

Balangai, Ndelemai, Shagayu, Mweni-

Gombero, Kisimagonja, Mahezangulu, 

Bumba Mavumbi, Kikongoloi, Manka, 

Bombo Makole, Kwebagu/Hebangwe, 

Kwenyashu, Shambalai, Mtumbi and Kitara 

ridge); and eleven Village Forest Reserves 

(Mzongoti, Chambogo, Kwamongo, Kifulio, 

Dindira, Shukilai, Sekigoto, Yumbu, 

Mazashai, Tanda, Deai). There is also one 

training forest under Sokoine University of 

Agriculture (Mazumbai) and two Private 

forests under management of tea estate 

(Ambangulu and Dindira Lutindi). These 

forests have vegetation types ranging from 

lowland, intermediate (sub-montane) to 

highland (montane) evergreen forests. 

Common trees are Newtonia buchananii, 

Parinari excelsa, Albizia gummifera, Ocotea 

usambarensis and Allanblackia stuhlmannii.  

Data collection 

Literature search and data compilation 

We used both data published in the peer-

reviewed literature and data from unpublished 

sources provided by various sources. 

Comprehensive literature search using Web 

of Science, Google Scholar databases, and 

Internet search via google chrome were used 

to extract peer reviewed studies related with 

AGB and AGC estimation in UTMFs. A 

substantial number of published studied and 

reports were obtained from EAMCEF 

website (http://www.easternarc.or.tz). 

Additionally, some of the existing data on 

tree diameter at breast height (dbh) and 

height (ht) were analyzed and their sources 

were cited and acknowledged. Credibility of 
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the data were assessed based on the 

methodology of data collection and the 

obtained results in relation with the existing 

information. The detail of data collection is 

described below. 

Data sources and types 

Data sources in this study referred to the 

specific source, which reported the values of 

the AGB and AGC for the published and 

reported works. Likewise, for the cases of 

unpublished data this referred to the project, 

programme or institution, which supported 

the research work or provided the data to the 

authors. On the other hand, data types for 

published and existing data were categorized 

based on the definition by Lu et al. (2016) 

which were referred as field, remote sensing, 

and Geographical Information System (GIS) 

data.  

State of art on biomass and carbon stock 

estimation methods 

State of Art on the methods for estimation of 

AGB and AGC were grouped based on the 

data types described above. This included, 

field, GIS, remote sensing and combination 

of either field and remote sensing or field 

with GIS. Such description has been used by 

Lu, (2006); Lu et al. (2016); Wakawa (2016) 

for reviewing the state of art on the methods 

for forest biomass estimation in their studies.  

Biomass and carbon stock 

We extracted the AGB and AGC values from 

the texts, tables, and figures available in 

selected publications. Raw data available 

from a non-governmental conservation 

organization, Frontier Tanzania, (Doggart, 

2000) and National Forest Resources 

Monitoring and Assessment (NAFORMA) 

(MNRT, 2015) programme were analyzed 

and generated the results which were used to 

present the AGB and AGC for specific 

forests. Sampling design and data collection 

procedures adopted by Frontier and 

NAFORMA are described in Frontier 

(2001), Vesa et al. (2010), MNRT (2015) 

and Mauya et al. (2019), while computations 

of the AGB and AGC is as explained below. 

Computation of AGB and AGC 

Single tree AGB for the raw data obtained 

from Frontier were computed using the 

allometric models by Masota et al. (2016). 

The single tree variables were then up scaled 

into per hectare values by dividing with the 

plot areas. AGC per ha were computed by 

multiplying AGB per ha with 0.50 following 

the procedure described by Smith et al. ( 

2013). Moreover, AGB and AGC values for 

the specific forests located in both WUMFs 

were extracted from the countrywide plot 

values reported in the study by Mauya et al. 

(2019) computed from NAFORMA data. 

Plot values data from Frontier were further 

used to develop linear models for predicting 

AGB per ha using basal area per ha (BA) as 

input variable. This was done for the studies 

by Lovett (1996) at Kisimagonja Forest 

Reserve and by Nganyagwa (2014) at Mkusu 

Forest Reserve. 

Factors affecting AGB and AGC 

distribution 

It is well known that a number of factors 

affect spatial distribution of AGB and AGC 

in forest ecosystem (Imani et al. 2017). In 

this study, we reviewed reported factors 

intrinsic to the UTMFs and demonstrated 

how these factors may have caused 

variations of AGB and AGC among forests. 

 

RESULTS 

Data Sources and types 

Based on the review, the key data sources 

used for AGB and AGC in the UTMFs are 

scientific publications and research reports. 

Comparing the two blocks, there were more 

studies reported from East Usambara 

Mountain forests as compared as to West 

Usambara Mountain forests (WUMFs). 

Majority of the reported studies are 

published between 1995 and 2015. The 

studies covered all the three basic data types 

commonly used in estimation of AGB and 

AGC (Table 1). These included; field (e.g. 

Munishi and Shear 2004, Masota et al. 2016) 

GIS (e.g. Marshall et al. 2012, Willcock et 
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al. 2014, Hansen et al. 2015b) and remote 

sensing data (e.g. Hansen et al. 2015a, 

Hansen et al. 2015b, Mauya et al. 2015) 

State of Art on methodology for estimating 

AGB and AGC  

The state of art for AGB and AGC estimation 

using the three common datasets described 

above is described in the sub sections below 

and further presented in Table 1&2  

Field based approaches 

Field based methods had been used for 

estimation of AGB and AGC in UTMFs 

(Table 1). Destructive sampling method had 

been used to generate samples for 

development of AGB allometric models 

(Table 2). These models were developed by 

establishing a relationship between the tree 

AGB and the physical parameters of the 

trees. The reported AGB models in UTMFs 

used dbh only or dbh and ht or combination 

of dbh, ht and wood density (Table 2). Global 

AGB models were also used for estimation 

of the AGB and AGC by various authors 

(e.g. Marshall et al. 2012) in UTMFs, though 

use of local based models had been highly 

recommended by different scholars. Both 

local and regional models had been used to 

estimate AGB of the plot based 

measurements which involved dbh or dbh 

and ht. AGB models, which included total 

tree height, had been reported to have lower 

uncertainty as compared to those which do 

not include tree height. This is further 

demonstrated in Figure 3, where the models 

with dbh only seem to have larger predicted 

values over a given range of dbh as compared 

to the model with both dbh and ht. In this 

review, three Height–Diameter (ht-dbh) 

models (Table 2) developed in EUMFs were 

also reviewed and their performance is 

presented in Figure 4.  

Table 1. Methods used for AGB and AGC estimation in UTMFs 

Category Methods 
Number 

of studies 
References 

Field-based 

methods 

Allometric equations 1 (Masota et al. 2016) 

Conversion from volume to AGB 1 (Munishi and Shear, 2004) 

Remote 

sensing based 

methods 

Optical remote sensing 1 (Willcock et al. 2014) 

Interferometric synthetic aperture radio 

detection and ranging (InSAR) 

2 (Hansen et al. 2015b, Solberg et 

al. 2017) 

Airborne Laser Scanning (ALS) 
3 (Hansen et al. 2015a, Hansen et 

al. 2015b, Mauya et al. 2015) 

Combination of InSAR and ALS 1 (Hansen et al. 2015b) 

GIS-based 
Methods based on ancillary data (e.g., Slope, 

soil, elevation and precipitation) 

3 (Marshall et al. 2012, Willcock 

et al. 2014, Hansen et al. 2015b) 

 

Figure. 3. Performance of AGB models with dbh only and dbh and ht  
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Table 2. Existing ht and AGB models in UMFs 

Model 

component 

n Model Source 

H-D   

751 ℎ = 1.3 + 𝑒𝑥𝑝[7.0818 − 7.2141 × 𝑑𝑏ℎ−0.1639] (Mugasha et al. 2013) 

90 ℎ = 1.3 + 45.5103 × [𝑒𝑥𝑝(−2.7163 × 𝑒𝑥𝑝(−0.0354 × 𝑑𝑏ℎ))] (Mauya et al. 2015) 

1492 
1.3 +

𝑑𝑏ℎ2

(0.3376 + 0.9834 × 𝑑𝑏ℎ2)
 

(Hansen et al. 2015a) 

AGB  
60 0.9635 × 𝑑𝑏ℎ1.9440 (Masota et al. 2016) 

60 0.4020 × 𝑑𝑏ℎ1.4365 × ℎ𝑡0.8613 

 

 

Figure. 4. A graph for tree ht over dbh based on the models developed for EUMTs  

 

Systematic, random and double sampling for 

stratification with rectangular and circular 

plots of sizes ranging from 500 m2 to 10,000 

m2 (i.e., 1 ha) have been adopted as sampling 

designs in the reviewed studies. Plot 

measurements involved trees with minimum 

dbh ranging from 5 cm to 10 cm for most of 

the reviewed AGB based studies. Estimation 

of the plot based estimates used area based 

approach where AGB and AGC of individual 

trees in the plot were up scaled into per ha 

basis by summing up all the trees in the plot 

and dividing by the plot area. 

GIS and remote sensing based approaches 

Three studies (Table 1) reported the use of 

Terrain Variables in the estimation of AGB 

and AGC. In the study by Marshall et al. 

(2012). AGC was modeled using a broad set 

of environmental, topographical and edaphic 

variables. Their results indicated that, 

climatic and topographical variables were 

more consistent predictors for AGC 

explaining for about 70% of the model 

variations. On the other hand, modelling and 

estimation of AGB using remotely sensing 

data had been reported in UTMFs. Three 

studies using wall-to-wall ALS data were 

reviewed. Results for the studies indicated 

that ALS had larger potential for AGB 

estimation in these types of forest with 

reasonable precision and accuracy. Area 

based approach (ABA) had been applied 

where statistical models relating AGB 

measured at the plot and ALS metrics were 

developed. The metrics, which were mostly 

selected in the reported studies, included 

parameters of the ALS height distribution 

such as the mean or percentiles and 

parameters related to the canopy density. 

Parametric statistical methods, particularly 

multiple linear regression was used for 

development of statistical models. 

Performance of the models were judged 

using adjusted -R2 and RMSE. The reported 

results indicated R2 ranging from 35% to 

74% with RMSE values decreasing from 

63.6 to 29.2 % (e.g. Mauya et al. 2015b). 
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Relative efficiency as the measure of the 

utility of ALS assisted inventory compared 

to field based estimates have been reported 

in the range of 1.7 to 7. (e.g. Hansen et al. 

2015a; Mauya et al. 2015). Relative 

efficiency is equivalent to the factor by 

which sample sizes of field-based inventory 

would have to be increased to achieve the 

same precision using simple ALS assisted 

inventory. Plot size was reported as a major 

factor, which affect the precision of ALS, 

assisted Inventory.  

Above ground biomass and carbon stock  

Table 3 and Figure 5, summaries the AGB 

and AGC across different forests in EUMFs 

and WUMFs. Analysis based on the 

published and existing data indicated that, 

the average minimum values of AGB and 

AGC are 177.0 Mg ha-1 and 88.5 Mg ha-1 

respectively. The maximum reported 

average values for AGB and AGC are 872 

Mg ha-1 and 436 Mg ha-1. Comparing the two 

blocks irrespective of the size of the forests 

and blocks, the highest average value AGB 

and AGC is reported in WUMFs particularly 

at Mazumbai and Kisima gonja, and the 

smallest average values is reported on the 

same block at Mkusu Forest Reserve. 

Overall, the average values of AGB and 

AGC in the UMFs are 351.08 Mg ha-1 and 

175.54 Mg ha-1 respectively. Figure 5 

prepared based of the Frontier datasets 

indicates that the spread of AGB and AGC 

values differs from one forest to another.  

Factors affecting AGB and AGC estimates 

Most of the reviewed studies indicated that 

AGB and AGC estimates in UTMFs varies 

with forest structure, selection of allometric 

models, field plot sizes, sampling intensity, 

topographical and environmental factors.  

Forest structure 

Forest structure parameters in particular tree 

sizes and number of tree stems were the 

major structure parameters reported to affect 

the distribution of AGB and AGC. Based on 

the reported studies, small size tree classes 

held most of the stems and small fraction of 

AGB/AGC. This is further demonstrated 

using Frontier datasets in Figure 6 & 7 where 

the class with dbh>=90 cm had larger mean 

values as compared to other classes. 

  

 

Figure 5. Box plots for the distribution of total plot based estimates of AGB and AGC for 

each of the forest of EUTMFs based on Frontier data. The high dots represent 

maximum value, the solid middle bar is the median value and lower dot is lower 

value. 
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Table 3. Block Name, Forest Name, Mean AGB and AGC ± Confidence Interval (CI) and 

source of information 

Block Forest Name n 

AGB 

(Mg ha -1) 

AGC 

(Mg ha -1) Source 

EUMFs Amani Nature Forest Reserve 173 461.9±31.9 230.95 ± 15.95  (Hansen et al. 2015a) 

 Aman Nature Forest Reserve 168 407.12 ± 28.00 203.56 ±14.00  

Frontier 

 Bamba Ridge Forest Reserve 31 235.44 ± 37.79 117.72 ± 18.89 Frontier Data 

 Kambai Forest Reserve 52 310.55 ± 44.78 155.28 ± 22.45  

 Kwamngumi Forest Reserve 47 257.40 ± 46.56 128.70± 23.28  

 Longuza Forest Reserve 18 332.40± 74.36 166.20 ± 37.18  

 Kwamarimba Forest Resrve 52 277.10±28.68 138.55 ± 14.34   

 Manga Forest Resrve 35 280.40 ±54.20  140.20 ± 27.10   

 Mpanga Forest Reserve 6 405.25 ±44.79  202.63 ± 43.90   

 Mtai Forest Reserve 99 314.77±37.94 157.39 ± 18.97   

 Mlungui Forest Reserve 8 209.73 ±89.75 104.86 ± 44.88  

 Nilo Forest Reserve 119 350.70±35.02 175.35 ± 17.51  

 Semdoe Forest Reserve 18 439.31 ±122.49  219.66 ± 61.25   

 Segoma Forest Reserve 50 305.86 ±39.85  152.93 ± 19.92   

WUMFs Shagayu Forest Reserve  293±109 143.9 (Mbwambo et al. 2012) 

 Shagayu Forest Reserve 10 353.4 176.7 NAFORMA Data 

 Magamba Nature Forest Reserve  264.6 132.3 NAFORMA Data  

 Mkusu Forest Reserves 30 177.00 88.5 

Estimated from BA 

data reported by 

(Nganyagwa, 2014) 

 Baga 1 Forest Reserve  8 389.2 ± 317 194.5 ± 158.5   NAFORMA Data 

 

Mazumbai and Kisima Gonja Forest 

Reserve 100 872 ± 28  436 ± 14 

(Munishi and Shear, 

2004) 

 Kisima Gonja Forest Reserve  357.67 ± 219.24  178.83 109.62  

Estimated from BA 

data reported by 

(Lovett 1996) 

EUMFs 

and 

WUMFs 

Amani Nature, Mazumbai, Baga 1, 

and Ambangulu 7 429±151  214.5±75.5  (Marshall et al., 2012) 

 

Allometric models 

Two sets of models had been used for 

estimation of AGB i.e., models with dbh only 

and those which combine dbh and ht. 

Generally, the models which uses dbh as the 

only predictor variables have resulted into 

slightly larger estimates as compared to the 

models which combine both dbh and ht (e.g. 

Marshall et al. 2012). Furthermore, our 

review shows that allometric equations that 

are not specifically developed for UTMFs 

and by only including tree diameter, could 

over estimate AGB and hence be the major 

source of uncertainty in AGB and AGC 

estimation.  

Field plot size 

Field plot size had been reported as one of 

the key sampling parameters, which affects 

the precision estimates of AGB and AGC. 

Small field plot sizes were reported to have 

large variance as compared to larger plots. 

Figure 8, demonstrates this for the plot sizes 

ranging from 500 to 3000 m2 based on the 

data from Mauya et al. (2015). 
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Figure 6. Error bars for the distribution of AGB across dbh classes based on Frontier data. The y-axis 

represents the Mean AGB ± standard deviation and the x-axis represent the dbh classes  

 

 

Figure 7. Error bars for the distribution of AGC across dbh classes based on Frontier data. The y-axis 

represents the Mean AGC ± standard deviation and the x-axis represent the dbh classes 
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Figure 8. Mean and Standard Deviation of AGB estimates for different plot sizes 

 

Topographical and environmental factors 

Biophysical variables including slope, 

elevation and climate have been reported to 

strongly influence the distribution of AGB 

and AGC. For example, the study by 

Marshall et al. (2012) reported that Total 

AGC per plot was best modelled by physical 

variables slope, elevation and the 

presence/absence of elephants, by climate 

variable, and by soil pH. Physical variables 

were the strongest predictors, with slope and 

elevation explaining 63.7% of the variation 

in AGC.  

 

DISCUSSION 

Climate change mitigation schemes such as 

REDD+ need reliable, low-cost and 

repeatable estimates of biomass and carbon 

stock estimation as the basis for 

implementation and monitoring. To address 

this, various approaches for estimation of 

biomass and carbon stock had been devised 

and applied in different places across the 

tropical countries (Asrat et al. 2020). 

However, estimation of AGB and AGC is 

one among the complex and demanding 

processes in terms of time consumption, 

required equipment and financial resources 

(Petrokofsky et al. 2012, Temesgen et al. 

2015, Masota et al. 2016). Therefore, 

whenever possible compilation and 

harmonization of the existing information on 

AGB and AGC is encouraged (e.g. Malhi et 

al. 2006, Henry et al. 2011, Gardon et al. 

2020, Sun and Liu 2020). Such approach is 

compliant with IPCC Tier 2 accuracy level 

which encourages the use of forest volume or 

biomass values from existing forest 

inventories and/or ecological studies.  

In this study, we reviewed AGB and AGC 

information existing in the UTMFs, which 

are one among the globally well-known 

tropical rainforests with both high 

biodiversity and carbon storage potentials 

(e.g. Munishi and Shear 2004; Marshall et al. 

2012, Willcock et al. 2014). To our 

understanding, this is the first study to 

attempt to review AGB and AGC studies 

conducted in this biome. This study reviewed 

information and existing data from EUMFs 

and WUMFs. Approximately 1031 field 

plots were used to estimate AGB and AGC 

from various forests located in Usambara 

mountains. As such this study has generated 

a baseline information which can be used for 

reporting AGB and AGC values for the 

entire Usambara Mountain Forests as well as 

understanding the research trend on biomass 

and carbon estimation methods in the 

tropical rainforests.  

325

350

375

400

425

10
00

20
00

30
00

Plot Size ( m
2
)

M
e
a
n
_
A

G
B

 (
M

g
  h

a
1
)

200

250

300

10
00

20
00

30
00

Plot Size ( m
2
)

S
d
_
A

G
B

 (
M

g
  h

a
1
)



Tanzania Journal of Forestry and Nature Conservation, Vol 90, No. 2 (2021) 63-82 

 

75 
 

The study has shown that AGB and AGC 

studies from the peer reviewed published 

studies had started to be reported since the 

year 2000 all the way to 2015. Most of the 

reported earlier studies (e.g. Lovett 1996, 

Tallents et al. 2005, Burgess et al. 2007), 

were focusing on the biodiversity survey 

under the support of various conservation 

projects since 1990s. These projects (e.g., 

Frontier Tanzania) generated a substantial 

amount of vegetation data (e.g. Doggart 

2000) which were used in this study to 

compute AGB and AGC for the respective 

forests. Generally, our results showed that 

there is a progressive trend in the 

advancement of the methods for 

quantification of AGB and AGC, evolving 

from purely field to remotely sensed assisted 

forest inventory methods. This is partly 

because of the existing international and 

local initiatives to support the 

implementation of REDD+ projects as well 

as other initiatives intended for 

understanding of carbon potential of this 

important biome.  

Field, GIS and remote sensing-based 

methods had been applied. In the context of 

field based methods both indirect and direct 

approaches had been applied. Indirect 

approach, involved the estimation of AGB as 

the product of volume over bark, Expansion 

Factor (EF) and Wood Density, and finally 

converting the value to AGC by multiplying 

with a factor of 0.5. Indirect method had been 

applied by Munishi and Shear (2004) in 

estimating AGB of WUMFs. Though the 

application of EF is not explicitly stated in 

the study by Munishi and Shear (2004). 

Since the application of the indirect biomass 

prediction method relies on BEFs not 

directly measured in ordinary forest 

inventories, the uncertainties in AGB 

estimation for this method, as compared to 

the direct method had been a concern of 

several authors Magalhães and Seifert 

(2015); Njana (2017). As such direct 

approach which involves the use of 

destructive sampling and allometric models 

is considered to be a more accurate compared 

to indirect approach (Njana 2017). 

Allometric models using dbh; dbh and 

height; and dbh, ht and wood density have 

been developed for UTMFs by Masota et al. 

(2016), with sample datasets collected from 

EUMFs (ANR) and therefore they are more 

representative of the population of the trees 

of UTMFs. Use of these local based models 

as compared to the global models Chave et 

al. (2005) is highly recommended in the 

literatures in order to account for local based 

variations such as climate, soil, topography 

and tree species composition which affect the 

allometry and AGB distribution (Yuen et al. 

2016). Use of local based models had further 

been emphasized as a best way of reducing 

uncertainty in AGB and AGC estimation 

(e.g. Van Breugel et al. 2011; Daba and 

Soromessa 2019). Models which incorporate 

dbh and ht or combination dhh, ht and wood 

density had been reported to have a better fit 

and lower uncertainty as compared to the 

models which include dbh only (Chave et al. 

2005; Basuki et al. 2009; Feldpausch et al. 

2011; Rutishauser et al. 2013). Among the 

reasons for such improvement is that; the 

relationships between AGB and tree 

attributes depend on factors such as site, 

successional status, ecological zone, forest 

type and management, which are highly 

explained by ht-dbh allometry. Thus, 

measurement and estimation of ht is 

important for obtaining accurate estimates in 

AGB. However, unlike dbh measurement, 

which is easy to measure with high accuracy 

in the field and available in the forest 

inventory databases, measurement of total 

tree ht is difficult and expensive, especially 

in the tropics. Therefore, to increase the cost-

efficiency of the field work, it is a common 

procedure to measure dbh for all trees and ht 

for a subset of trees, called sample trees. The 

sample trees are then used to develop by ht-

dbh models that can be used to predict ht of 

other trees with missing ht information. Such 

models are also important for growth and 

yield simulators which usually need 

information on tree height, either at the 

individual tree, plot, or stand level, to predict 

forest dynamics, dominant height, and site 

index. Our review showed that at total of 
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three by ht-dbh models (e.g. Mugasha et al. 

2013, Hansen et al. 2015a, Mauya et al. 

2015) were reported from the UTMFs 

(Figure 4). Considering the performance of 

the models (Figure 4) and the size of the 

sample data as well as the geographical 

coverage, the model by (Hansen et al. 2015a) 

may be more considerable for height 

estimation in the UTMFs.07 However, the 

model does not have sample trees from 

WUMFs and thus consideration for 

developing model for WUMFs is important. 

Unlike other biomes in Tanzania and 

elsewhere, the presence of by ht-dbh and 

AGB allometric models have set a good basis 

for estimation of plot-based values on AGB 

and AGC, which are then used to calibrate 

other methods. 

As stated above, GIS based methods had also 

been reported in UTMFs, where a broad set 

of the topographical and climatic variables 

were used to predict AGC. Though the 

authors did not present detailed model 

evaluation criteria that could be used to judge 

the potential gain of using this method 

relative to field-based methods, they have 

indicated that there is correlation between 

AGC and the respective variables. This 

implies that this method can further be tested 

and evaluated. However, according to Lu 

(2006) GIS based method should be used 

with caution especially when using 

environmental variables which are 

anticipated to have weak relationship with 

AGB. Thus, more in-depth studies are 

needed to explore potential of this method in 

UTMFs.  

On the other hand, our study had revealed a 

well-documented technological 

advancement on application of remote 

sensing-based methods, particularly 

Airborne Laser Scanning (ALS). Overall, the 

findings of the studies by Hansen et al. 

(2015a); (Hansen et al. 2015b); Mauya et 

al.(2015) indicated that AGB could be 

modelled with ALS-derived metrics such as 

canopy height and canopy cover as 

explanatory variables with model 

performance similar to what has been 

reported in other tropical studies. Small plot 

sizes were reported to result in poorer models 

and therefore larger uncertainty of the final 

AGB estimates. Contribution of ALS data in 

improving the precision of AGB estimates 

was also demonstrated within a varying 

range of plot sizes. The Relative efficiency 

was > 1 (i.e., 1-7.7), indicating that ALS-

assisted estimation was more efficient 

compared to pure field-based estimation. 

This implies that, to achieve similar 

precision of a pure field-based estimate 

relying on simple random sampling, would 

mean to increase the sample size for the 

field-based inventory by a factor equivalent 

to the value of RE, which would have a 

substantial effect on field inventory costs 

Mauya et al. (2015). In general, the gain in 

relative efficiency was more pronounced as 

plot size increased, suggesting that larger 

plots are more favorable when ALS data are 

used to assist in the estimation. Despite the 

potential of ALS assisted inventory in terms 

of technical efficiency, its use for operational 

purposes in Tanzania need economic 

considerations given the higher data 

acquisition costs as compared to other 

methods. In countries like Finland, Norway 

and Denmark ALS assisted inventory have 

simply turned out to be more cost–effective 

compared to other methods because of the 

higher labour costs (Kangas et al. 2018). In 

Tanzania labor costs are relatively lower 

compared to these countries and ALS 

acquisition costs are higher even in absolute 

terms. Therefore, consideration for assessing 

the applicability of open access remote 

sensing data, which have proved to have 

good performance for AGB estimation in 

other tropical forests, should be given 

priority as an opportunity for enhancing 

remotely sensed based forest inventory in 

Tanzania. More specifically the use of 

Sentinel 1, 2 and Landsat 8. 

AGB and AGC estimates for UTMFs 

reported by different authors as well as those 

computed from the existing data in this 

study, indicated that mean AGB and AGC 

values ranged from 177.00 Mg ha-1 and 88.5 

Mg ha-1 to 872 Mg ha-1 and 436 Mg ha-1 
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respectively. These values are within those 

reported by Spracklen and Righelato (2014) 

for the world’s tropical montane forests (i.e., 

AGB of 77-785 Mg ha-1) as well as those of 

Lewis et al. (2013) which was estimated 

across 260 African tropical forests. The 

lower values reported in Mkusu Forest 

Reserve is because of the higher disturbance 

as compared other forests, which are 

dominated by relatively low frequency 

disturbance regimes over decades, allowing 

trees to grow large and contribute more to 

AGB and AGC. Forest structures in 

particularly tree sizes distribution in relation 

with AGB and AGC had been shown to be 

the key forest structure attribute which 

affects the distribution of AGB and AGC. 

Based on the Frontier data we showed that 

larger trees contribute more to AGB and 

AGC in these types of forests as compared to 

medium and small size trees (Figures 5&6). 

Similar findings had been reported by Slik et 

al. (2013), where they indicated that large 

trees (≥70 cm diameter at breast height 

(DBH) stored, on average, 25.1, 39.1 and 

44.5% of above ground biomass (AGB) in 

South America, Southeast Asia and Africa, 

respectively, but represented only 1.5, 2.4 

and 3.8% of trees >10 cm dbh. Climate, 

topography as well as estimation methods 

particularly the selection of allometric 

models are also reported to be the sources of 

spatial variations in AGB and AGC in the 

UTMFs. However further studies are 

recommended to investigate these factors 

using robust sample sizes which covers the 

substantial areas in the UTMFs. 

 

CONCLUSION 

To conclude, our study has provided the first 

extensive information on AGB and AGC for 

the UTMFs, which can be used to report 

forest carbon. As such, these forests remain 

to have higher AGB and AGC storage 

potential compared to other forests in 

Tanzania as long as their conservation status 

is not changed. Although there is a 

progressive trend in the estimation of AGB 

and AGC in the UTMFs, more update and 

effective forest survey data and methods are 

needed particularly in WUMFs. Potential use 

of open access remotely sensed data for 

estimation of AGB and AGC should further 

be investigated. Finally, the reporting of the 

total forest carbon will require information 

on other pools i.e., below ground biomass, 

litter, dead wood and soil, thus future studies 

should be encouraged to estimate biomass 

and carbon potential of these pools.  
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